Question Answering and Machine Translation

NLP, The Course

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling

Ethical Considerations

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications

Language and Psychology (advanced sentiment)

Speech and Audio Processing, Dialog (chatbots)

Question Answering, Translation

NLP, The Course

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling

Ethical Considerations

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications

Language and Psychology (advanced sentiment)

Speech and Audio Processing, Dialog (chatbots)

Question Answering, Translation

The goal of question answering is to build systems that automatically answer questions posed by humans in a natural language

The goal of question answering is to build systems that automatically answer questions posed by humans in a natural language

Who is the first person to go to Mariana Trench?

The first person to go to the Mariana Trench was the American oceanographer and adventurer Don Walsh, who descended to its deepest point, the Challenger Deep, in 1960.

The goal of question answering is to build systems that automatically answer questions posed by humans in a natural language

Who is the first person to go to Mariana Trench?

The first person to go to the Mariana Trench was the American oceanographer and adventurer Don Walsh, who descended to its deepest point, the Challenger Deep, in 1960.

Q: From a user's perspective, are you happy with the answer?

The goal of question answering is to build systems that automatically answer questions posed by humans in a natural language

GPT-4 visual input example, Extreme Ironing:

User What is unusual about this image?

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

The goal of question answering is to build systems that automatically answer questions posed by humans in a natural language

GPT-4 visual input example, Extreme Ironing:

User What is unusual about this image?

GPT-4

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

Q: From a user's perspective, are you happy with the answer?

The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

The goal of question answering is to build systems that automatically answer questions posed by humans in a natural language

Question Answering: A Taxonomy

Information	Question	Answer
Documents (corpus)	Factoid vs non-factoid	Single fact
Document	Open vs closed domain	Explanation
Knowledge Base	Simple vs multi-step	Document
Other modalities of	Narrative	Extracted span
uala (intage, video)		Image or other object

Real-World Applications Everywhere!

Siberia

Lake **Baikal**, in Siberia, holds the distinction of being both the deepest lake in the world and the largest freshwater lake, holding more than 20% of the unfrozen fresh water on the surface of Earth.

Real-World Applications Everywhere!

Google	How can I protect myself from COVID-19?					
	Q All ⊑ Images ⊑ News ⊘ Shopping ▶ Videos ⋮ More Settings Tools					
	The best way to prevent illness is to avoid being exposed to this virus. Learn how COVID-19 spreads and practice these actions to help prevent the spread of this illness.					
	 To help prevent the spread of COVID-19: Cover your mouth and nose with a mask when around people who don't live with you. Masks work best when everyone wears one. Stay at least 6 feet (about 2 arm lengths) from others. Avoid crowds. The more people you are in contact with, the more likely you are to be exposed to COVID-19. 					
	 Avoid unventilated indoor spaces. If indoors, bring in fresh air by opening windows and doors. Clean your hands often, either with soap and water for 20 seconds or a hand sanitizer that contains at least 60% alcohol. 					
	 Get vaccinated against COVID-19 when it's your turn. Avoid close contact with people who are sick. 					
	Cover your cough or sneeze with a tissue, then throw the tissue in the trash.Clean and disinfect frequently touched objects and surfaces daily.					
	C Learn more on cdc.gov					
	For informational purposes only. Consult your local medical authority for advice.					

Areas in Question Answering

Reading Comprehension	 Answer based on a document Context is a one (or more) document(s)
Open-Domain QA	 Answer based on encyclopedic knowledge Context is the Internet (all knowledge)
Visual QA	 Answer is simple and factual Context is one/multiple image(s)

Areas in Question Answering

Reading Comprehension	 Answer based on a document Context is a one (or more) document(s) 	
Open-Domain QA	 Answer based on encyclopedic knowledge Context is the Internet (all knowledge) 	
Visual QA	 Answer is simple and factual Context is one/multiple image(s) 	

Reading Comprehension

Comprehend a passage of text and answer questions about its content

Reading Comprehension (MCTest)

Comprehend a passage of text and answer questions about its content

Passage (P)

Ρ

Question (Q)

+

Answer (A)

Alyssa got to the beach after a long trip. She's from Charlotte. She traveled from Atlanta. She's now in Miami. She went to Miami to visit some friends. But she wanted some time to herself at the beach, so she went there first. After going swimming and laying out, she went to her friend Ellen's house. Ellen greeted Alyssa and they both had some lemonade to drink. Alyssa called her friends Kristin and Rachel to meet at Ellen's house.

Q Why did Alyssa go to Miami?

A To visit some friends

Reading Comprehension (MCTest)

Comprehend a passage of text and answer questions about its content

Passage (P)

Ρ

Q

Question (Q)

Answer (A)

Alyssa got to the beach after a long trip. She's from Charlotte. She traveled from Atlanta. She's now in Miami. She went to Miami to visit some friends. But she wanted some time to herself at the beach, so she went there first. After going swimming and laying out, she went to her friend Ellen's house. Ellen greeted Alyssa and they both had some lemonade to drink. Alyssa called her friends Kristin and Rachel to meet at Ellen's house.

Why did Alyssa go to Miami?

+

A To visit some friends

- ~3k questions from ~1k articles
- Multiple-choice questions
- Need for paraphrase, coreference resolution and dealing with many distractors

Reading Comprehension (SQuAD)

Comprehend a passage of text and answer questions about its content

Passage (P)

Ρ

Question (Q)

Answer (A)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q Where do water droplets collide with ice crystals to form precipitation?

+

Reading Comprehension (SQuAD)

Comprehend a passage of text and answer questions about its content

Passage (P)

Question (Q)

Answer (A)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Q

Ρ

Where do water droplets collide with ice crystals to form precipitation?

+

Within a cloud A

- 100k annotated (passage, question, answer) triples
- Answer is a short segment of text (or span) in passage
- Questions are crowd-sourced, passages are from English Wikipedia, usually 100-150 words long

Evaluating Reading Comprehension

Passage (P)

Question (Q)

A

Answer (A)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Where do water droplets collide with ice crystals to form precipitation?

+

Within a cloud Inside clouds

Clouds

Collide inside clouds

- Exact match (EM): 0 or 1
- $\max\{0, 0, 0\} = 0$

Ρ

Q

Evaluating Reading Comprehension

Passage (P)

Question (Q)

A

Answer (A)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

Where do water droplets collide with ice crystals to form precipitation?

+

Within a cloud Inside clouds

Clouds

Collide inside clouds

- F1: Partial credit
- max{0.33, 0.67, 0.33} = 0.67

Q

Models for Reading Comprehension

Passage (P) + Question (Q)

Answer (A)

Input: $P = (p_1, p_2,..., p_N), Q = (q_1, q_2,...,q_M)$ Output: 0 < start < end < N+1 *N*~100, *M*~15 answer is a span in the passage

Passage (P) + Question (Q)

Answer (A)

Input: $P = (p_1, p_2,..., p_N), Q = (q_1, q_2,...,q_M)$ Output: 0 < start < end < N+1 *N*~100, *M*~15 answer is a span in the passage

Passage (P) + Question (Q)

Answer (A)

Input: $P = (p_1, p_2,..., p_N), Q = (q_1, q_2,...,q_M)$ Output: 0 < start < end < N+1 *N*~100, *M*~15 answer is a span in the passage

Question = Segment A Passage = Segment B Answer = predicting two endpoints in segment B

mccormickml.com

Question = Segment A Passage = Segment B Answer = predicting two endpoints in segment B

Question: How many parameters does BERT-large have?

Reference Text: BERT-large is really big... it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

Question = Segment A Passage = Segment B Answer = predicting two endpoints in segment B

Question: How many parameters does BERT-large have?

Reference Text: BERT-large is really big... it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

mccormickml.com

Start/End Span

	F1	EM
Human performance	91.2*	82.3*
BiDAF	77.3	67.7
BERT-base	88.5	80.8
BERT-large	90.9	84.1
XLNet	94.5	89.0
RoBERTa	94.6	88.9
ALBERT	94.8	89.3

dev set, except for human performance

Questions that require long answers

Question: How do Jellyfish function without brains or nervous systems? [...] (60 words)

Answer: Jellyfish may not have a brain, but they have a rough nervous system and innate behaviours. However, they are very simple creatures. They're invertebrate: creatures without a backbone. Most jellyfish have really short life spans. Sometimes just a couple of hours. [...] As their name implies, they are largely composed of basically jelly inside a thin membrane. They're over 95% water. (327 words)

Documents: [...] Jellyfish do not have brains, and most barely have nervous systems. They have primitive nerve cells that help them orient themselves in the water and sense light and touch. [...] While they dont possess brains, the animals still have neurons that send all sorts of signals throughout their body. [...] They may accomplish this through the assistance of their nerve rings. Jellyfish don't have brains, and that's just where things begin. They don't have many of the body parts that are typical in other animals. [...] (1070 words)

ELI5 (Fan et al., 2019)

Questions that require long answers

Question: How do Jellyfish function without brains or nervous systems? [...] (60 words)

Answer: Jellyfish may not have a brain, but they have a rough nervous system and innate behaviours. However, they are very simple creatures. They're invertebrate: creatures without a backbone. Most jellyfish have really short life spans. Sometimes just a couple of hours. [...] As their name implies, they are largely composed of basically jelly inside a thin membrane. They're over 95% water. (327 words)

Documents: [...] Jellyfish do not have brains, and most barely have nervous systems. They have primitive nerve cells that help them orient themselves in the water and sense light and touch. [...] While they dont possess brains, the animals still have neurons that send all sorts of signals throughout their body. [...] They may accomplish this through the assistance of their nerve rings. Jellyfish don't have brains, and that's just where things begin. They don't have many of the body parts that are typical in other animals. [...] (1070 words) Questions that require discrete reasoning

Q: Where did Charles travel to first, Castile or Barcelona?

In 1517, the seventeen-year-old King sailed to Castile, where he was formally recognised as King of Castile. There, his Flemish court provoked much scandal, ... In May 1518, Charles traveled to Barcelona in Aragon, where he would remain for nearly two years.

DROP (Dua et al., 2019)

ELI5 (Fan et al., 2019)

Setting	CoQA	DROP	QuAC	SQuADv2	RACE-h	RACE-m
Fine-tuned SOTA	90.7 ^a	89.1 ^b	74.4 ^c	93.0 ^d	90.0 ^e	93.1 ^e
GPT-3 Zero-Shot	81.5	23.6	41.5	59.5	45.5	58.4
GPT-3 One-Shot	84.0	34.3	43.3	65.4	45.9	57.4
GPT-3 Few-Shot	85.0	36.5	44.3	69.8	46.8	58.1

Why few-shot GPT-3 is still not enough?

- Context length is long cannot use enough examples
- No fine-tuning

Areas in Question Answering

Reading Comprehension	 Answer based on a document Context is a one (or more) document(s)
Open-Domain QA	 Answer based on encyclopedic knowledge Context is the Internet (all knowledge)
Visual QA	 Answer is simple and factual Context is one/multiple image(s)

Open-Domain Question Answering

- No given passage, just a large collection of documents (e.g., Wikipedia)
- No idea where answer is located
- Have to answer any open-domain questions
- Very challenging, but more practical

Open-Domain Question Answering

Retriever-Reader Framework

Input: $D = (D_1, D_2, ..., D_N), Q$

Output: an answer string A

Retriever: $f(D, Q) \rightarrow (P_1, P_2, ..., P_k)$

Reader: $g(Q, \{P_1, P_2, ..., P_K\}) \rightarrow A$

D: large collection of documents

K is pre-defined
Dense Passage Retrieval

Dense Passage Retrieval

Dense Retrieval + Generative Models

Fusion-in-decoder (FID)

DPR + T5

Izacard and Grave, 2020.

Dense Retrieval + Generative Models

Fusion-in-decoder (FID)

DPR + T5

Generative Models for Open-Domain QA

Answering Why-Questions

Matt and Sarah were pregnant.

They wanted to announce it in a fun way.

They wrote it on a cake.

They invited their friends over.

When their friends saw the cake, they were excited.

Why were Matt and Sarah pregnant?

Knowing why is important for reasoning about events

Answering Why-Questions

Using Commonsense to Answer Why-Questions

Matt and Sarah were pregnant.

They wanted to announce it in a fun way.

They wrote it on a cake.

They invited their friends over.

When their friends saw the cake, they were excited.

Q: Why were Matt and Sarah pregnant?

Commonsense Knowledge:

- become pregnant to have babies
- can become pregnant from sexual intercourse

They wanted to have a baby

Using Commonsense to Answer Why-Questions

How Good are Models?

Model Name

Looking Closer at Likert Values

Likert Score

Looking Closer at Likert Values

Multi-Step Questions Answering

Questions to answer which we need multiple steps of reasoning.

What are Multi-Step Questions

Questions to answer which we need multiple steps of reasoning.

Many of our day-to-day information needs require multi-step reasoning.

Many of our day-to-day information needs require multi-step reasoning.

Which vegetarian restaurants near me are open if I've a peanut allergy?

- Find a list of open restaurants near me.
- Select the ones which have vegetarian options in the menu.
- Select the ones which have peanut-free options in the menu.

Many of our day-to-day information needs require multi-step reasoning.

Can I finish GOT Season 7 if I've 10 hours this weekend?
--

- Get a list of episodes and duration of GOT from season 7.
- Sum the time duration of GOT for all the episodes.
- Check if the total duration is less than 10 hours.

To satisfy such information needs, we need models that perform multi-step reasoning.

What are the Challenges of Multi-Step QA?

Reading Comprehension QA

Reading Comprehension QA

Open-Domain QA

Reading Comprehension QA

?

Where did OpenAI's CEO go for undergrad?

Reading Comprehension QA

Open-Domain QA

Reading Comprehension QA

Where did OpenAI's CEO go for undergrad?

?

Context (Few Paragraphs)

Reading Comprehension QA

Reading Comprehension QA

Reading Comprehension QA

Reading Comprehension QA

Reading Comprehension QA

Reading Comprehension QA

Reading Comprehension QA

State of Few-Shot Multi-Step Open-Domain QA

Model	HpQA ^{Br}	HpQA	2WikiMQA	MQ ^{2H}	
InterAug	- -	30.3 -	- -	- I -	
ReAct	-1 -	35.1 -	— I —	— I —	
SelfAsk	-1 - 1	— I —	40.1 -	15.2 -	EM F1
DecomP	- I 50.0	— I —	- 59.3	— I —	
IRCoT QA	45.8 58.5	49.3 60.7	57.7 68.0	34.2 43.8	

 \Rightarrow InterAug: (Internet-augmented LMs through few-shot prompting for ODQA) Lazaridou et. al.

- ⇒ ReAct: (ReAct: Synergizing Reasoning and Acting in Language Models) Yao et. al
- ⇒ SelfAsk: (Measuring and Narrowing the Compositionality Gap in Language Models) Press et. al.
- ⇒ DecomP: (Decomposed Prompting: A Modular Approach for Solving Complex Tasks) Khot et. al.

Machine Translation

NLP, The Course

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling

Ethical Considerations

0-----

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications

Language and Psychology (advanced sentiment)

Speech and Audio Processing, Dialog (chatbots)

Question Answering, Translation

Enter text	I would like a	l would like a bottle of your finest white wine
	vorrei un i would like a vorrei un i would like a coffee Vorrei un caffe	Vorrei una bottiglia del vostro miglior vino bianco
	English	English 🚓 Italian
) @ Ê \$ \$ 0) () 4 ()
	× good bottle plan	× is and for
	qwertyuiop	qwertyuiop
English 🛹 Italian	asd fghjkl	asd fghjkl
	☆ z x c v b n m	☆ z x c v b n m ⊗
Conversation Camera	123 😳 🕴	123 😳 🕴

Machine Translation

X: Ces robes chères sont italiennes

Machine Translation

X: Ces robes chères sont italiennes

Machine Translation

X: Ces robes chères sont italiennes

Y: Those expensive dresses are Italian

History of Machine Translation

- Rosetta Stone to understand Egyptian hieroglyphics
- World War 2 code-breaking efforts (Alan Turing)
- 1940s-mid 1960s: Rule-based systems (RBMT)
- 1990s-2013: Statistical systems (SMT)
- 2014+: Neural systems (NMT)

History of Machine Translation

- Rosetta Stone to understand Egyptian hieroglyphics
- World War 2 code-breaking efforts (Alan Turing)
- 1940s-mid 1960s: Rule-based systems (RBMT)
- 1990s-2013: Statistical systems (SMT)
- [2014+: Neural systems (NMT)]

Neural Machine Translation

- Encoder-Decoder Models
- Attention Mechanism
- Transformers

NMT: Encoder-Decoder

NMT: Encoder-Decoder

target words so far and source sentence x

NMT: Encoder-Decoder

NMT: Attention

NMT: Attention

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

NMT is close to or outperforms SMT!

NMT: Attention

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

NMT is close to or outperforms SMT!

Sequential computation = extremely time-taking Cannot handle very long sequence lengths

NMT: Transformer

Vaswani et al., 2017

Vaswani et al., 2017

Training NMT Systems

- Parallel Data
- Transfer Learning
- Data Augmentation using Backtranslation
- Unsupervised Methods

Backtranslation

- Train a system in the reverse language translation
- Use this to translate target side monolingual data (synthetic data)
- Combine generated synthetic parallel data with real parallel data to build the final system
- Can be done iteratively: Iterative Backtranslation

Unsupervised Machine Translation

Embedding spaces for different language have similar shape

Unsupervised Machine Translation

How can we rotate the triangles to match up?

MT and LLMs

Despite VERY large-scale pretraining data, LLMs are not great

Challenges

- Reliable Evaluation
- Low-resource MT
- Multilinguality
- Document+ level translation

Human Evaluation

Given: MT output, reference translation

Task: Assess quality of MT output

- Adequacy: Does output convey same meaning as input?
- Fluency: Is the output fluent in the target language?

Human Evaluation

Given: MT output, reference translation

Task: Assess quality of MT output

- Adequacy: Does output convey same meaning as input?
- Fluency: Is the output fluent in the target language?

Annotators disagree too; AND they use Google Translate themselves!!!

Given: MT output, reference translation

Task: Compute similarity between them

- Lexical metrics
- Trained metrics

- Lexical metrics
 - Word Error Rate (WER)

$$\mathsf{WER} = \frac{substitutions + insertions + deletions}{reference-length}$$

Think Levenshtein Distance!

- Lexical metrics
 - BLEU

$$\mathsf{BLEU} = \min\left(1, \frac{\textit{output-length}}{\textit{reference-length}}\right) \left(\prod_{i=1}^{4} \textit{precision}_i\right)^{\frac{1}{4}}$$

Lexical metrics

0

Sophisticated 4-gram Precision

Papineni et al., 2002

• Lexical metrics

- Ignore relevance of words
- Operate on local level
- Human translators often have poor BLEU scores!

Low Resource Machine Translation

- 7000+ languages in the world
- <100,000 parallel sentences for most language pairs
- Massively multilingual MT 1600 languages
- Datasets to advance this: FLORES, NLLB

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling

Ethical Considerations

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications

Language and Psychology (advanced sentiment)

Speech and Audio Processing

Question Answering, Translation

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling

Ethical Considerations

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications

Language and Psychology (advanced sentiment)

Speech and Audio Processing

Question Answering, Translation

Overall NLP Concept

I. Syntax

Introduction to NLP; Tokenization; Words Corpora

One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;

Parsing; Verbal Predicates; Dependency Parsing

II. Semantics

Dependency Parsing; Word Sense Disambiguation

Vector Semantics (Embeddings), Word2vec

Probabilistic Language Models Ngram Classifier, Topic Modeling

Overall NLP Concept

III. Language Modeling

Ethical Considerations

Masked Language Modeling (autoencoding)

Generative Language Modeling (autoregressive)

Applying LMs

IV. Applications

Language and Psychology (advanced sentiment)

Speech and Audio Processing

Question Answering, Translation

	- Sec	Overall NLP Concept	Computation or ML	
Overall NLP Concept	Computation or ML	III. Language Moo	deling Transformers	
I. Syntax Classification		CEthical Considerations	Model cards, Pred Bias Frmwrk	
Introduction to NLP; Tokenization; Words Corpora	Regular Expressions; Edit Distance	Masked Language Modeling (autoencoding)	Neural Networks; Backprop Cross-Entropy Loss Self-Attention,	
One-hot, and Multi-hot encoding. Parts-of-Speech; Named Entities;	Maximum Entropy Classifier (LogReg), Gradient Descent,	Generative Language Modeling (autoregressive)	Positional encodings The Transformer:	
Parsing; Verbal Predicates;Dependency Parsing	Cross Validation; Regularization Accuracy Metrics; Shift Reduce	Applying LMs	Beam Search Fine-Tuning, zero-/few-shot, Instruction tuning	
II. Semantics Probabilistic Models		IV. Applications Custom Statistical or Symbolic		
Dependency Parsing; Word Sense Disambiguation	Term Probabilities; N-d Vectors	Language and Psychology (advanced sentiment)	Differential Language Analysis; Adaptive Modeling; Human LMing	
Vector Semantics (Embeddings), Word2vec	LDA, Skipgram Model	Speech and Audio Processing,	Wave Transforms; RNNs	
Probabilistic Language Models Ngram Classifier, Topic Modeling	markov assumption, chain rule, smoothing	Question Answering, Translation	Multihop Reasoning	